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Kernel Methods
d Kernel mean embedding of distributions

µP =
∫

k(·, x)dP(x)

d Kernel Monte Carlo Filter [Kanagawa et al., 2016a]: Combination of
1. Kernel Bayes’ Rule [Fukumizu et al., 2013]
2. Monte Carlo sampling
3. Kernel Herding [Chen et al., 2010]

d Getting interested in Kernel Herding...
d Greedy approach to deterministic sampling or quadrature

xt := argmin
x∈X

∥∥∥∥∥µP −
1
t

t−1∑
i=1

k(·, xi)−
1
t k(·, x)

∥∥∥∥∥
Hk

2



Kernel Methods
d Kernel mean embedding of distributions

µP =
∫

k(·, x)dP(x)

d Kernel Monte Carlo Filter [Kanagawa et al., 2016a]: Combination of
1. Kernel Bayes’ Rule [Fukumizu et al., 2013]
2. Monte Carlo sampling
3. Kernel Herding [Chen et al., 2010]

d Getting interested in Kernel Herding...
d Greedy approach to deterministic sampling or quadrature

xt := argmin
x∈X

∥∥∥∥∥µP −
1
t

t−1∑
i=1

k(·, xi)−
1
t k(·, x)

∥∥∥∥∥
Hk

2



Kernel Methods
d Kernel mean embedding of distributions

µP =
∫

k(·, x)dP(x)

d Kernel Monte Carlo Filter [Kanagawa et al., 2016a]: Combination of
1. Kernel Bayes’ Rule [Fukumizu et al., 2013]
2. Monte Carlo sampling
3. Kernel Herding [Chen et al., 2010]

d Getting interested in Kernel Herding...
d Greedy approach to deterministic sampling or quadrature

xt := argmin
x∈X

∥∥∥∥∥µP −
1
t

t−1∑
i=1

k(·, xi)−
1
t k(·, x)

∥∥∥∥∥
Hk

2



Quadrature or Sampling with Kernels
d Convergence analysis for kernel-based quadrature rules in misspecified settings

[Kanagawa et al., 2016b, Kanagawa et al., 2017]

d Given (wi, xi)ni=1 ⊂ R×X such that

lim
n_∞

∥∥∥∥∥µP −
n∑
i=1

wik(·, xi)
∥∥∥∥∥
Hk

= 0,

whereHk is the RKHS of k, what can we say about the error∣∣∣∣∣
∫

f(x)dP(x)−
n∑
i=1

wif(xi)
∣∣∣∣∣ ,

for a misspecified f 6∈ Hk?
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Probabilistic Numerics

Current research interests include ...

1. Connections between Gaussian processes and kernel methods
d Currently writing a review paper ... to be submitted soon.

2. Decision theoretic viewpoint for probabilistic numerics
d Why uncertainty matters? Because we need to make decisions based on numerics!

(Talk at SIAM-UQ)
3. Bayesian quadrature

d Transformation of a Gaussian process prior (e.g., WSABI)
d High-dimensional integration
d Stein’s method for an unnormalized density [Oates et al., 2017].

4. (Approximate Bayesian Computation)
d Application of Kernel herding [Kajihara et al., 2018]
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