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Global optimisation considers objective functions that 
are multi-modal and often expensive to evaluate. 



The Rosenbrock is expressible in closed-form.

18 Bayesian Optimization

The e�cient global optimization (EGO) algorithm is the combination of
DACE model with the sequential expected improvement acquisition criterion.
It was published in a paper by Jones et al. [91] as a refinement of the SPACE
algorithm (stochastic process analysis of computer experiments) [153]. Since
EGO’s publication, there has evolved a body of work devoted to extending
the algorithm, particularly in adding constraints to the optimization problem
[6, 150, 26], and in modelling noisy functions [17, 83, 84].

In the bandits setting, Lai and Robbins [100] introduced upper confidence
bounds (UCB) as approximate alternatives to Gittins indices in 1985. Auer
studied these bounds using frequentist techniques, and in adversarial multi-
armed bandit settings [9, 8].

The literature on multi-armed bandits is vast. The book of Cesa-
Bianchi [40] is a good reference on the topic of online learning with ex-
perts and bandits in adversarial settings. There are many results on explo-
ration [33, 55, 54] and contextual bandits [105, 124, 2]. These contextual ban-
dits, may also be seen as myopic approximations to Markov decision processes.

1.7 Probabilistic numerics: another view of Bayesian op-
timization

Bayesian optimization can be seen as a reinterpretation of a problem from nu-
merics, global optimization, within the framework of probabilistic inference.
Above, we’ve motivated Bayesian optimization as being useful where one does
not have a closed-form expression for the objective function. However, con-
sider a classic two-dimensional, deterministic, optimization test problem: the
Rosenbrock function,

f(x, y) = (1� x)2 + 100(y � x2)2,

for (x, y) 2 R2. Many works in Bayesian optimization [180, 11, 136] use the
Rosenbrock as a test problem, as convergence to the global minimum3 is often
slow due to its being located in a long, narrow, valley. In performing Bayesian
optimization, a Gaussian process prior is assigned to the Rosenbrock function,
thereby treating it as uncertain. That is, we take a Gaussian distribution over
its value at any (x, y) pair, despite f(x, y) being expressible in closed-form in
fewer than twenty characters. It might be thought that performing Bayesian
optimization for this function is pathological, or unrepresentative. However,
many objective functions (such as the likelihood functions of models whose
hyperparameters are to be optimized) are not only deterministic4, but are fully

3
The Rosenbrock’s true global minimum is f(1, 1) = 0.

4
For stochastic objectives, the use of probabilistic methods requires, perhaps, even weaker

motivation.



Computational limits form the core of the optimisation 
problem.
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For stochastic objectives, the use of probabilistic methods requires, perhaps, even weaker

motivation.



Bayesian optimisation is the approach of 
probabilistically modelling f(x,y), and using decision 
theory to make optimal use of computation. 

�.�. Optimization Using Gaussian Processes
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We define a loss function that is the lowest function 
value found after our algorithm ends.

Assuming that we have only one evaluation remaining,
the loss of it returning value y, given that the current 
lowest value obtained is η, is



This loss function makes computing the expected loss 
simple: we’ll take a myopic approximation and consider 
only the next evaluation.

The expected loss is the expected lowest value of the 
function we’ve evaluated after the next evaluation. 

: All available information.
: Next evaluation location.



We choose a Gaussian process as the probability 
distribution for the objective function, giving a tractable 
expected loss.



















Bayesian optimisation is the 
most impactful probabilistic 

numeric method.



Snoek, Larochelle and Adams (2012) used Bayesian 
optimisation to tune expensive convolutional neural 
networks. 
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Figure 6: Validation error on the CIFAR-10 data for different optimization strategies.

vergence tolerance early on while exploring the other parameters. Indeed, 3x GP EI per second, is
the least efficient in terms of function evaluations but finds better parameters faster than all the other
algorithms. Figure 5c compares the use of various covariance functions in GP EI MCMC optimiza-
tion on this problem5, again repeating the optimization 100 times. It is clear that the selection of an
appropriate covariance significantly affects performance and the estimation of length scale param-
eters is critical. The assumption of the infinite differentiability as imposed by the commonly used
squared exponential is too restrictive for this problem.

4.4 Convolutional Networks on CIFAR-10
Neural networks and deep learning methods notoriously require careful tuning of numerous hyper-
parameters. Multi-layer convolutional neural networks are an example of such a model for which a
thorough exploration of architechtures and hyperparameters is beneficial, as demonstrated in Saxe
et al. [21], but often computationally prohibitive. While Saxe et al. [21] demonstrate a methodology
for efficiently exploring model architechtures, numerous hyperparameters, such as regularisation
parameters, remain. In this empirical analysis, we tune nine hyperparameters of a three-layer con-
volutional network [22] on the CIFAR-10 benchmark dataset using the code provided 6. This model
has been carefully tuned by a human expert [22] to achieve a highly competitive result of 18% test
error on the unaugmented data, which matches the published state of the art result [23] on CIFAR-
10. The parameters we explore include the number of epochs to run the model, the learning rate,
four weight costs (one for each layer and the softmax output weights), and the width, scale and
power of the response normalization on the pooling layers of the network.

We optimize over the nine parameters for each strategy on a withheld validation set and report the
mean validation error and standard error over five separate randomly initialized runs. Results are
presented in Figure 6 and contrasted with the average results achieved using the best parameters
found by the expert. The best hyperparameters found by the GP EI MCMC approach achieve an
error on the test set of 14.98%, which is over 3% better than the expert and the state of the art on
CIFAR-10. The same procedure was repeated on the CIFAR-10 data augmented with horizontal
reflections and translations, similarly improving on the expert from 11% to 9.5% test error and
achieving to our knowledge the lowest error reported on the competitive CIFAR-10 benchmark.

5 Conclusion
We presented methods for performing Bayesian optimization for hyperparameter selection of gen-
eral machine learning algorithms. We introduced a fully Bayesian treatment for EI, and algorithms
for dealing with variable time regimes and running experiments in parallel. The effectiveness of our
approaches were demonstrated on three challenging recently published problems spanning different
areas of machine learning. The resulting Bayesian optimization finds better hyperparameters sig-
nificantly faster than the approaches used by the authors and surpasses a human expert at selecting
hyperparameters on the competitive CIFAR-10 dataset, beating the state of the art by over 3%.

Acknowledgements
The authors thank Alex Krizhevsky for making his neural network code available, and George Dahl
for valuable feedback. This work was funded by DARPA Young Faculty Award N66001-12-1-4219,
NSERC and an Amazon AWS in Research grant.

5See also the supplementary material for comparisons on other problems.
6Available at: http://code.google.com/p/cuda-convnet/
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Previously, hyperparameters were often hand-tuned 
(!!): Bayesian optimisation hence offers automation.

No. of open positions for deep learning 
experts, according to Gartner: 41,000. 

No. of deep learning experts, according to 
Yoshua Bengio: 50.





A O’Hagan



Bayesian optimisation has spawned many companies.

Whetlab
We make machine
learning better and 
faster, automatically.

Leading the way in in ML 2.0: 
machine learning becomes 
automated and operational



How did this happen?



Firstly, numerics is central to machine learning 
performance.



There have been real successes in machine learning 
enabled by Bayesian optimisation.

Source: Silver et al (2017); Melis, Dyer, and Blunsom (2017). 



Secondly, Bayesian optimisation built a community, 
agreed on goals and provided open-source software. 
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Abstract
Progress in practical Bayesian optimization is hampered by the fact that the only
available standard benchmarks are artificial test functions that are not representative
of practical applications. To alleviate this problem, we introduce a library of
benchmarks from the prominent application of hyperparameter optimization and
use it to compare Spearmint, TPE, and SMAC, three recent Bayesian optimization
methods for hyperparameter optimization.

1 Introduction
The performance of many machine learning (ML) methods depends crucially on hyperparameter
settings and thus on the method used to set hyperparameters. Recently, Bayesian optimization
methods have been shown to outperform established methods for this problem (such as grid search
and random search [1]) and to rival—and in some cases surpass—human domain experts in finding
good hyperparameter settings [2, 3, 4]. As a result, hyperparameter optimization has become
an active research area within Bayesian optimization, with characteristics such as low effective
dimensionality [1, 5, 6] and problem variants, such as optimization across different data sets [7] being
explored.

One obstacle to further progress in this nascent field is a dearth of hyperparameter optimization
benchmarks and comparative empirical studies. It can be difficult to evaluate a new optimizer on
benchmarks used in previous papers because (1) optimizers are written in different programming
languages and use different search space representations and file formats; (2) hyperparameter opti-
mization benchmarks that have been developed jointly with an optimizer are not typically packaged
as black boxes (including the respective machine learning algorithm and its input data) that can be
used with other optimizers.

To alleviate these problems, we have collected and made available a library of hyperparameter
optimization benchmarks from the recent literature and used it to empirically evaluate the respective
strengths and weaknesses of three prominent Bayesian optimization methods for hyperparameter
optimization: SPEARMINT [2], TPE [8], and SMAC [9]. We thereby hope to provide an empirical
foundation to facilitate the development and evaluation of future methods for this problem.

2 Bayesian Optimization Methods for Hyperparameter Optimization
Given a machine learning algorithm A having hyperparameters �1, . . . ,�n with respective domains
⇤1, . . . ,⇤n, we define its hyperparameter space ⇤ = ⇤1 ⇥ · · · ⇥ ⇤n. For each hyperparameter

1



Thirdly, Bayesian optimisation adopted a ruthless focus 
on the real pain-points of users. A good example is 
batch Bayesian optimisation. 

Source: Rontsis, Osborne & Goulart (2017)
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Figure 2: Bayesian optimization results using the arc kernel.

Results. Table 1 shows that a GP using the arc kernel performs favourably to a GP that ignores the
relevance information of each point. The “separate” categories apply a different model to each layer
and therefore do not take advantage of dependencies between layers. Interestingly, the separate Arc
GP, which is effectively just a standard GP with additional embedding, performs comparably to a
standard GP, suggesting that the embedding doesn’t limit the expressiveness of the model.

3.2 Bayesian Optimization Experiments
In this experiment, we test the ability of Bayesian optimization to tune the hyperparameters of each
layer of a deep neural network. We allow the neural networks for these problems to use up to 5
hidden layers (or no hidden layer). We optimize over learning rates, L2 weight constraints, dropout
rates [19], and the number of hidden units per layer leading to a total of up to 23 hyperparameters
and 6 architectures. On MNIST, most effort is spent improving the error by a fraction of a per-
cent, therefore we optimize this dataset using the log-classification error. For CIFAR-10, we use
classification error as the objective. We use the Deepnet2 package, and each function evaluation
took approximately 1000 to 2000 seconds to run on NVIDIA GTX Titan GPUs. Note that when a
network of depth n is tested, all hyperparameters from layers n+ 1 onward are deemed irrelevant.

Experimental Setup. For Bayesian optimization, we follow the methodology of [10], using slice
sampling and the expected improvement heuristic. In this methodology, the acquisition function
is optimized by first selecting from a pre-determined grid of points lying in [0, 1]23, distributed
according to a Sobol sequence. Our baseline is a standard Gaussian process over this space that is
agnostic to whether particular dimensions are irrelevant for a given point.

Results. Figure 2 shows that on these datasets, using the arc kernel consistently reaches good
solutions faster than the naive baseline, or it finds a better solution. In the case of MNIST, the best
discovered model achieved 1.19% test error using 50000 training examples. By comparison, [20]
achieved 1.28% test error using a similar model and 60000 training examples. Similarly, our best
model for CIFAR-10 achieved 21.1% test error using 45000 training examples and 400 features. For
comparison, a support vector machine using 1600 features with the same feature pipeline and 50000
training examples achieves 22.1% error. Figure 2c shows the proportion of function evaluations
spent on each architecture size for the CIFAR-10 experiments. Interestingly, the baseline tends
to favour smaller models while a GP using the arc kernel distributes it’s efforts amongst deeper
architectures that tend to yield better results.

4 Conclusion
We introduced the arc kernel for conditional parameter spaces that facilitates modelling the perfor-
mance of deep neural network architectures by enabling the sharing of information across architec-
tures where useful. Empirical results show that this kernel improves GP model quality and GP-based
Bayesian optimization results over several simpler baseline kernels. Allowing information to be
shared across architectures improves the efficiency of Bayesian optimization and removes the need
to manually search for good architectures. The resulting models perform favourably compared to
established benchmarks by domain experts.

5 Acknowledgements
The authors would like to thank Ryan P. Adams for helpful discussions.

2https://github.com/nitishsrivastava/deepnet
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Bayesian optimisation is useful in automating 
structured search over # hidden layers, learning rates, 
dropout rates, # hidden units per layer & L2 weight 
constraints.

Source: Swersky, Duvenaud, Snoek, Hutter and Osborne (2013).



Bayesian optimisation is well-suited to noisy 
optimisation.



Freeze-thaw Bayesian optimisation unifies inner-loop 
(training) optimisation and outer-loop 
(hyperparameter) optimisation.

Source: Swersky, Snoek & Adams (2014).



Using only a subset of the data (a mini-batch) gives a 
noisy likelihood evaluation.



Lower-variance evaluations (on smaller subsets) are 
higher cost: let’s also Bayesian optimise over the fidelity 
of our evaluations!

Klein, Falkner, Bartels, Hennig & Hutter (2017);
McLeod, Osborne & Roberts (2017), arxiv.org/abs/1703.04335

Figure 5: Performance of EnvPES
(green), PES (red) and Expected
Improvement (blue) and FABOLAS
(purple) finding the best hyperpa-
rameters for a support vector ma-
chine classifying the MNIST dataset.
The median and interquartile range
(shaded) of seven runs are shown.
Here we have used the original form
of FABOLAS.

Figure 6: Performance of EnvPES
(green), PES (red) and Expected Im-
provement (blue) minimizing the neg-
ative log-likelihood of kernel hyper-
parameters for a Gaussian Process on
UK power data. The median and in-
terquartile range (shaded) of ten runs
are shown.

5/2 kernel on freely available half hourly time series data for UK electricity demand for 20153.214

Evaluation of this objective with the full dataset again typically incurs a cost of around ten minutes.215

EnvPES is able to evaluate the log-likelihood of random subsets down to nsub = 0.02N of the full216

dataset. We adjust the log-likelihood by g(y, nsub) = �y nsub
N

if y < �1, 1 + log(�y nsub
N

) else, which217

is monotonic smooth and continuous with respect to the true log-likelihood but reduces the absolute218

value of large negative likelihoods and normalizes subsets to the value at the full dataset. EI and PES219

are only able to use the full dataset. As shown in Figure 6 we are able to achieve performance similar220

to the methods that do not make use of the environmental variable.221

pending fabolas result fig6
222

6 Conclusion223

We have proposed a novel acquisition function based on Predictive Entropy Search for use in variable224

cost Bayesian Optimization. We further introduce a novel sampling strategy applicable to both ES225

and PES which makes our implementation more computationally efficient. We have also proposed an226

alternative method for evaluating the performance of Bayesian Optimization methods. Bringing these227

together we demonstrate a practical Bayesian Optimization algorithm for variable cost methods and228

have shown that we are able to match or exceed the performance of existing methods on a selection229

of synthetic and real world applications.230

3www2.nationalgrid.com/UK/Industry-information/Electricity-transmission-operational-data/Data-
explorer
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We tune the hyperparameters of a 
GP fitted to half hourly time series 
data for UK electricity demand for 
2015, for which a full evaluation 
costs ten minutes. 



Bayesian optimisation and Bayesian quadrature can be 
combined to optimize in the presence of environmental 
variables.

Source: Paul, Chatzilygeroudis, Ciosek, Mouret, Osborne and Whiteson (2018). 



What are the lessons for 
(other) probabilistic numeric 

methods?



Firstly, machine learning is a rich source of important 
numeric problems. 

Source: NIPS 2017 statistics; https://is.gd/Abw95A

These problems are often 
exotic (e.g. combined 
optimisation and quadrature), 
structured, noisy and 
expensive, all motivating 
bespoke probabilistic numeric 
methods.



Secondly, probabilistic 
numerics needs to to 
cohere around 
recurring workshops, 
performance metrics
and open-source 
software.



Thirdly, there’s a movement to make machine learning 
more rigorous and interpretable: it’s time for rigorous 
and interpretable numerics.



Probabilistic numerics
should provide rigorous 
solutions to the diverse 

needs of machine learning.


